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Finite resolution effects in the analysis of the scaling behavior of rough surfaces

Javier Buceta, Juanma Pastor, Miguel A. Rubio, and F. Javier de la Rubia
Departamento de Fı´sica Fundamental, Universidad Nacional de Educacio´n a Distancia, Apartado Correos 60.141, 28040 Madrid, Spa

~Received 12 April 1999!

We investigate the influence of finite spatial resolution in the analysis of the scaling behavior of rough
surfaces. We analyze such an effect for two usual measurement methods: the local width and the height-height
correlation function. We show that while the correlation function is insensitive to finite resolution effects for
practical purposes, the local width presents correction terms to the scaling law, leading to an effective value of
the local roughness exponent smaller than the theoretically expected. We also show that a functional scaling
relation can only be properly formulated in terms of the height-height correlation function.

PACS number~s!: 68.35.Ct, 05.10.2a, 68.35.Fx, 81.15.Aa
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To characterize the roughness of a surface is an impor
issue in science and technology. Mechanical problems c
cerning friction, wear, or adhesion show a crucial dep
dence on the smoothness of the surfaces that get into con
It is also known that surface roughness affects dramatic
the electrical and optical properties of thin films, whic
makes the development of better controlled surface gro
techniques an important line of research. Many of these te
niques show growth regimes with common spatiotempo
features, as for instance the appearance of scale inva
rough surfaces. Natural processes such as the infiltratio
water in porous rocks or the growth of bacterial colonies a
show scale invariant behavior@1#.

Scale invariance is revealed by scaling exponents
functions that may be measured to classify the growth p
cesses into universality classes. To characterize experim
results or numerical simulations, it is necessary to study
scaling properties of some functions related to the surf
profile. One of the most widely used is the so-calledlocal
interface width, Wl

2(t), defined as the rms fluctuations o
the interface height h(x,t), i.e., Wl

2(t)5^@h(x,t)
2hl(x,t)#2&x,l , where l is the size of a measurement win
dow, hl(x,t) is the mean height in the window, and^•&x,l
indicates averages within a window and over the windows
the same size~there is also an implicit average over realiz
tions when this is needed!. After a saturation time that scale
as tsat; l z (z is the dynamic exponent!, the local width satu-
rates, and a power law can be defined for smalll such that
Wl

2(t@tsat); l 2a l, wherea l is the local roughness exponen
Other relevant quantities, both in experiments and simu
tions, are the height-height correlation function~HHCF!,
Gl

2(t)5^@h(x1 l )2h(x)#2&x , which scales in the same wa
as the local width assuming that any possible overall slop
the interface has been removed, and the power spectru
the interface,S(q,t) @1#.

A common characteristic in experiments and numeri
simulations is the finite spatial resolution in the data. In t
paper we analyze the limitations introduced in the analysi
scale invariant growth regimes by that unavoidable fin
resolution when measuring the local roughness exponent
considering various scaling behaviors, we show that the lo
width depends on the spatial resolution in a relevant w
introducing corrections toWl

2(t) that may lead to wrong val
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ues for the local roughness and preclude the possibility
formulating a functional scaling relation in terms of the loc
width. Moreover, we also show that the corrections to
HHCF can be neglected for practical purposes, and there
we claim that in experiments and numerical simulations t
technique is more adequate to study the scaling propertie
rough surfaces.

To put our work in a proper context, we briefly revie
some of the concepts used in the analysis of growth p
cesses. The usual way to theoretically formulate the sca
properties of rough interfaces is in terms of the global wid
WL

2(t), whereL is the system size. The functional behavi
of the global width is summarized in the Family-Vicsek~FV!
scaling relation @2#, WL

2(t);L2agf (L/t1/z), where f (u)
;const foru!1, and f (u);u22ag for u@1. The dynamic
exponentz reflects the lateral correlation length dependen
on time, andag is the global roughness exponent. In a
experimental situation, the system size is usually a fix
parameter, whereas in numerical simulations chang
the system size is not the optimal way to compute the rou
ness exponent. Therefore, other ways of measurement
showing these limitations, have to be considered. One po
bility is to compute the power spectrum,S(q,t), so that
when FV scaling is satisfied it behaves asS(q,t)
5q2(2ag1d)g(q21t21/z), where g(u);const for u!1 and
g(u);u2(2ag1d) for u@1, and whered denotes the spatia
dimension of the interface. However, there are models in
literature for whichS(q,t) does not show this scaling beha
ior. It is known that if the noise is not renormalized~NRN!,
g(u) behaves asu2z for u@1 @3#, whereas in some case
named intrinsic anomalous~IA !, g(u);u22(ag2a l ) for u
!1 @4,5#. However, the power spectrum technique is not fr
of problems. In experiments where the primary data are
topography of the interfaces, the power spectrum is obtai
through a Fourier transformation which is usually rath
noisy. On the other hand, experiments that yield directly
power spectrum must be cross-checked with other com
mentary methods giving the topography of the interfac
because a spuriousq decay behavior, which would yield a
incorrectag value, might be introduced in several ways@6#.
Therefore, it is common to focus on the local width functio
Wl

2(t) or on the height-height correlation functionGl
2(t),

that, as already said, scale fort@tsat as l 2a l. For the global
6015 ©2000 The American Physical Society
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and local roughness exponents we have that ifag.1, and
either FV or NRN is satisfied for the power spectrum~super-
roughening!, then a l51, while if ag,1 and either FV or
NRN holds, thena l5ag ~self-affinity!. Finally if S(q,t) be-
haves as IA,a lÞag irrespective of whetherag is larger or
smaller than 1. It is worth pointing out that in all casesa l
<1 because of a geometrical property@7#.

We now study the effect of the spatial resolution on the
techniques. We first analyze the effect for the local wid
showing that this method depends on it in a crucial w
Then, we show that when analyzing the scaling behav
with the height-height correlation function, the finite spat
resolution effects are negligible. We will restrict the analy
to 111 dimensions, but a generalization to higher spa
dimensions is straightforward~assuming there is a scalin
behavior!.

Let us call h(xj ,t) the interface height at timet, for a
given xj5 j Dx where 0< j <N21. Recalling that the Fou
rier decomposition ish̃q(t)5(1/N)( jh(xj ,t)e2 iqxj , we may
write for the local surface width

Wl
2~L,t;Dx!5 (

q.0
2S~q,t;Dx!F~q,l ;Dx!

. (
q.0

2S~q,t;0!F~q,l ;Dx!, ~1!

where

F~q,l ;Dx!512F Dx

~ l 1Dx!

sinS q~ l 1Dx!

2 D
sinS qDx

2 D G 2

, ~2!

and we have replaced the discrete power spectrum by
continuous expression, an approximation fully justified b
cause the corrections to the power spectrum in terms of
spatial resolution begin to be relevant at largeq, and those
modes do not contribute significantly to the total sum in E
~1!. Useful analytical expressions can be obtained transfo
ing the sum in Eq.~1! into an integral. Assuming that th
system size is finite but large (L@Dx), the limits for the
integral are 2p/L andp/Dx. If, moreover,Dx!1, the upper
limit can be set tò . Note also that fort@tsat the power
spectrum behaves asS(q,t;0);q2(2x11), where x5ag if
FV or NRN holds andx5a l if S(q,t;0) behaves as IA.
Making a Taylor expansion in Eq.~1!, we finally obtain the
following expression for the local width at those time scal

Wl
2~L,t;Dx!; l 2xF f xS 11

2Dxx

l D
1 (

k52

`

gk,x~ l !S 11
2Dx~k21!

l D G1O~Dx2!,

~3!

where
fx5cos@p~x11!#G„22~x11!…,
e
,
.
r

l
s
l

its
-
e

.
-

,

gk,x( l )5 1
2 @(21)k11/(2k)!(k2x21)#( l / l c)

2(k2x21), G is
the usual Gamma function, andl c5L/2p is the characteristic
length that separates the small and large length scales. N
that in the sum in Eq.~3!, terms withk,x11 are relevant at
small length scales (l , l c), i.e., for the scaling properties
and that this is only possible ifx.1, producing that
Wl , l c

2 (L,t;Dx) scales asl 212Dxl. On the other hand, term

with k.x11 are important at large length scale
( l . l c). We can then write the relation of the local widt
with the spatial resolution at small length scales as

Wl , l c
2 ~L,t;Dx!; l 2a l12a lDxl2a l21, ~4!

for any of the above described scaling behaviors. Ifa l
.1/2 the finite resolution effect contributes in a releva
way, since, at very small scales,l;Dx, the correction is
larger thanl 2a l and so the finite resolution correction in
creases significantly the local width at those length sca
As a consequence, the measured local roughness expo
called theeffectiveroughness exponent,aeff , is smaller than
a l . On the contrary, ifa l51/2, as in the KPZ equation fo
example, the correction introduced by the finite resolut
increases the local width at small length scales by a v
small constant@10#, and, therefore, there is no significa
change in the scaling behavior.

It is also interesting to point out that the finite spat
resolution does not allow us to have a scaling relation
terms of a unique variable. As an example, the functio
behavior of the local width for the IA scaling@11# can now
be written as

Wl
2~L,t;Dx!; l 2agf ~ l /t1/z,t1/z,Dx!, ~5!

where the scaling functionf (u,v,Dx) is

f ~u,v,Dx!;H u2(a l2ag)@112Dxa l~uv !122a l# ~u!1!

u22ag ~u@1!
~6!

and no collapse of the local width for different evolutio
times at small length scales is possible.

Incidentally, Eq.~3! also serves to analyze the existen
of a crossover between small and large length scales
posed in Ref.@8# for super-rough interfaces. There it ha
been claimed that the valuea l,1, obtained in numerica
simulations using the local width technique, is due to t
convergence of the local and global widths atl 5L, i.e., that
there is a crossover between small and large length sc
that leads to anaeff that underestimatesa l . However, the
possible corrections to the scaling behavior~4! begin to be
relevant for length scalesl> l c5L/2p. In this case all terms
for k.x11 are important, and no scaling behavior can
defined. As a consequence, no crossover effect can exp
the valuesa l,1.

Some of these analytic results are illustrated in Fig. 1
the equilibrium linear molecular beam epitaxy~LMBE!
model@9#, also called the Mullins-Herring model, for whic
it is known that in 111 dimensions,ag53/2, z54, and
S(q,t) obeys the FV scaling~super-roughening!. The LMBE
model reads
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] th~x,t !52
]4h~x,t !

]x4
1h~x,t !, ~7!

whereh(x,t) denotes Gaussian white noise with zero me
value and correlation given bŷh(x,t)h(x8,t8)&52Dd(t
2t8)d(x2x8). Figure 1 shows that the effect of the fini
resolution is to increase the local width at small leng
scales. The effective roughness exponents were obtaine
ting the local width to a power law as it is usually done
numerical simulations and experiments,f ( l )} l 2aeff. From
the same plot, it is clear that the larger the lattice spacing
smaller the effective local roughness exponent. On the o
hand, the local roughness exponents have been comp
fitting the local width with a functionf ( l )}( l 2a l12lDx)
according to Eq.~4!. As one expects, the local roughne
exponent does not depend on the finiteness of the sp
resolution once this effect is properly taken into account
the fitting function.

Now we analyze the effect of the spatial resolution on
height-height correlation function. With the same appro
mation used in Eq.~1!, the expression for the correlatio
function in terms of the power spectrum and the spatial re
lution is

Gl
2~ t;Dx!5 (

q.0
4S~q,t;Dx!@12cos~ql !#'Gl

2~ t;0!, ~8!

FIG. 1. Discrete local width~1! for different values of the spa
tial resolution for the LMBE model. The system size isL
51000 (l c.160). The inset plot shows the local and the effect
roughness exponents versus the spatial resolution. The ave
value ofa l is 0.99660.004.
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and, therefore, the corrections introduced by the spatial re
lution are negligible for the HHCF~a result already pointed
out in @3#!. Consequently, the correlation function is a mu
more adequate method for computing the local roughn
than the local width.

To check all the previous analytical results we perform
numerical simulations of Eq.~7! using an Euler scheme with
periodic boundary conditions. Figure 2 shows unambig
ously that the local width obtained in the simulations co
cides with the finite resolution local width~1!. Numerical
values for the local and effective roughness exponents h
been obtained by fitting the data to expressionsf ( l )}( l 2a l

12lDx) and f ( l )} l 2aeff, respectively. The values obtaine
are a l50.9660.01 andaeff50.8160.03. For the sake o
completeness, we have also plotted in Fig. 2 the correla
function. Fitting the data at small length scales to a pow
law yieldsa l50.9560.01. Notice that no relevant correctio
to the scaling at small scales is observable in contrast w
the case of the local width.

Another useful way to look for the scaling exponents is
collapse the local width or the correlation at different tim
by appropriately rescaling the axis. In Fig. 3 we pl
Wl

2(t)/ l 2ag and Gl
2(t)/ l 2ag versus l /t1/z for two different

evolution times. Note that while a good data collapse can
obtained for the correlation function for all length scales, t
is not so for the local width at small length scales.

ge

FIG. 2. The local width~circles! and the HHCF~squares! of the
LMBE model obtained from numerical simulations using their de
nition in terms of the interface height. In both cases the solid lin
are the discrete versions obtained from Eqs.~1! and ~8!, respec-
tively. The continuous local width, Eq.~1! in the limit Dx50, is
also plotted~broken line!. For the HHCF the continuous and th
discrete results are indistinguishable. The values of the param
areD50.1, Dx50.5, L5500, andt58192. The short wide solid
line has slope 2 and serves to guide the eye.



f

e

he

6018 PRE 61BRIEF REPORTS
FIG. 3. Simulation and theoretical values o
~a! Wl

2(t)/ l 2ag and ~b! Gl
2(t)/ l 2ag vs l /t1/z for t

51 ~circles! and t58192 ~squares!. The solid
lines indicate the predictions obtained from th
discrete versions~1! and ~8!. Note that at small
scales a collapse can only be obtained for t
correlation function. The exponentsag andz are
3/2 and 4 in both cases.
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In summary, in this work we have shown for quite gene
scaling behaviors that, when considering the local wid
function, the effects of finite spatial resolution are importa
and, if not taken into account, they may lead to wrong val
for the local roughness exponent. As a consequence, the
ing ansatz cannot be consistently formulated in terms
the local width. These limitations, however, do not app
to the HHCF. These results have several important prac
consequences for experiments and numerical simulati
First, and most important, the HHCF should be the prefer
tool for the scaling analysis of rough surfaces in situatio
where the raw data are the topography of the interfaces,
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whereas if the experimental setup registers directly the po
spectrum, the HHCF should be the cross-checking tool
validating the results. Second, the local width can be u
properly only if the finite resolution correction to the scalin
is included in the analysis. Third, data collapsing accord
to the scaling ansatz can only be correctly performed w
the HHCF.
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