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Finite resolution effects in the analysis of the scaling behavior of rough surfaces
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We investigate the influence of finite spatial resolution in the analysis of the scaling behavior of rough
surfaces. We analyze such an effect for two usual measurement methods: the local width and the height-height
correlation function. We show that while the correlation function is insensitive to finite resolution effects for
practical purposes, the local width presents correction terms to the scaling law, leading to an effective value of
the local roughness exponent smaller than the theoretically expected. We also show that a functional scaling
relation can only be properly formulated in terms of the height-height correlation function.

PACS numbse(s): 68.35.Ct, 05.106-a, 68.35.Fx, 81.15.Aa

To characterize the roughness of a surface is an importantes for the local roughness and preclude the possibility of
issue in science and technology. Mechanical problems corfermulating a functional scaling relation in terms of the local
cerning friction, wear, or adhesion show a crucial depenwidth. Moreover, we also show that the corrections to the
dence on the smoothness of the surfaces that get into contaetHCF can be neglected for practical purposes, and therefore
It is also known that surface roughness affects dramaticallyve claim that in experiments and numerical simulations this
the electrical and optical properties of thin films, which technique is more adequate to study the scaling properties of
makes the development of better controlled surface growthough surfaces.
techniques an important line of research. Many of these tech- To put our work in a proper context, we briefly review
niqgues show growth regimes with common spatiotemporasome of the concepts used in the analysis of growth pro-
features, as for instance the appearance of scale invariaogsses. The usual way to theoretically formulate the scaling
rough surfaces. Natural processes such as the infiltration gfroperties of rough interfaces is in terms of the global width,
water in porous rocks or the growth of bacterial colonies alsaV?(t), whereL is the system size. The functional behavior
show scale invariant behavipt]. of the global width is summarized in the Family-Vics@R/)

Scale invariance is revealed by scaling exponents angcaling relation [2], WE(t)~L2“gf(L/t1/Z), where f(u)
functions that may be measured to classify the growth pro--const foru<1, andf(u)~u~2% for u>1. The dynamic
cesses into universality classes. To characterize experimenigkponentz reflects the lateral correlation length dependence
results or numerical simulations, it is necessary to study thgn time, andeg is the global roughness exponent. In an
scaling properties of some functions related to the surfac@xperimental situation, the system size is usually a fixed
profile. One of the most widely used is the so-calledal parameter, whereas in numerical simulations changing
interface width W{(t), defined as the rms fluctuations of the system size is not the optimal way to compute the rough-
the interface height h(x,t), ie., WZ(t)=([h(x,t) ness exponent. Therefore, other ways of measurement, not
—h|(x,t)]2>xl| , Wherel is the size of a measurement win- showing these limitations, have to be considered. One possi-
dow, hi(x,t) is the mean height in the window, ard), bility is to compute the power spectrung(q,t), so that
indicates averages within a window and over the windows ofvhen FV scaling is satisfied it behaves &(q,t)
the same sizéhere is also an implicit average over realiza- = q~ (2% 9g(q~t~1%), where g(u)~const foru<1 and
tions when this is needgdAfter a saturation time that scales g(u)~u~(%*% for u>1, and wherel denotes the spatial
astg,1” (z is the dynamic exponehtthe local width satu- dimension of the interface. However, there are models in the
rates, and a power law can be defined for srhallich that [iterature for whichS(q,t) does not show this scaling behav-
W2(t>14,) ~12%, whereaq, is the local roughness exponent. ior. It is known that if the noise is not renormalizésRN),
Other relevant quantities, both in experiments and simulag(u) behaves asi~* for u>1 [3], whereas in some cases,
tions, are the height-height correlation functi0HHCF),  named intrinsic anomaloudA), g(u)~u~ 2~ ) for u
G,Z(t)=([h(x+l)— h(x)]?), which scales in the same way <1 [4,5]. However, the power spectrum technique is not free
as the local width assuming that any possible overall slope inf problems. In experiments where the primary data are the
the interface has been removed, and the power spectrum tdpography of the interfaces, the power spectrum is obtained
the interface S(q,t) [1]. through a Fourier transformation which is usually rather

A common characteristic in experiments and numericahoisy. On the other hand, experiments that yield directly the
simulations is the finite spatial resolution in the data. In thispower spectrum must be cross-checked with other comple-
paper we analyze the limitations introduced in the analysis ofnentary methods giving the topography of the interfaces,
scale invariant growth regimes by that unavoidable finitebecause a spuriousdecay behavior, which would yield an
resolution when measuring the local roughness exponent. Byicorrecta, value, might be introduced in several ways.
considering various scaling behaviors, we show that the localherefore, it is common to focus on the local width function
width depends on the spatial resolution in a relevant Wany(t) or on the height-height correlation functicﬁlf(t),
introducing corrections tWV(t) that may lead to wrong val- that, as already said, scale fortg, as|?¥. For the global
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and local roughness exponents we have thatgit-1, and g, (1)=3[(—1)*"Y/(2K)!(k—x—1)](1/1c)2€ "1, T is
either FV or NRN is satisfied for the power spectr(super-  the usual Gamma function, ahg=L/27 is the characteristic
roughening, then =1, while if «g<1 and either FV or |ength that separates the small and large length scales. Notice
NRN holds, thery, = a4 (self-affinity). Finally if S(q,t) be-  that in the sum in Eq(3), terms withk< y+1 are relevant at
haves as |Aa,# a4 irrespective of whethewy is larger or  small length scalesl€l.), i.e., for the scaling properties,
smaller than 1. It is worth pointing out that in all cases and that this is only 2poss,ible if>1, producing that
<1 because of a geometrical propef#}. W,2<I (L,t;Ax) scales a$“+2AxI. On the other hand, terms
We now study the effect of the spatial resolution on thesgyitn * k>y+1 are important at large length scales
techniques. We first analyze the effect for the local width,(|>| ). We can then write the relation of the local width

showing that this method depends on it in a crucial wayith the spatial resolution at small length scales as
Then, we show that when analyzing the scaling behavior

with the height-height correlation function, the finite spatial W2, (Lt Ax)~ 12242 Ax]20~ 1 (4
resolution effects are negligible. We will restrict the analysis 1<l ’
to 1+1 dimensions, but a generalization to higher spatial

dimensions is straightforwar(hssuming there is a scaling for any of.the above _described scali_ng behaviors.alf
behavioy. >1/2 the finite resolution effect contributes in a relevant

Let us callh(x;,t) the interface height at timg for a W& since,za'lc very small scalek;-Ax, the correction is
given x;= jAx where 0<j=N—1. Recalling that the Fou- larger thanl<“! and so the finite resolution correction in-

. e iax. creases significantly the local width at those length scales.
ner decomposition ifig(1) (.:L/N)Elh(xl e, we may As a consequence, the measured local roughness exponent,
write for the local surface width

called theeffectiveroughness exponent,, is smaller than

a;. On the contrary, ifay=1/2, as in the KPZ equation for

WA(L,t;Ax) = >, 25(q,t;AX)D(q,l;AX) example, the correction introduced by the finite resolution
q>0 increases the local width at small length scales by a very

small constan{10], and, therefore, there is no significant

~ > 25(q,t;0)®(q,l;AX), (1)  change in the scaling behavior.
q>0 It is also interesting to point out that the finite spatial

resolution does not allow us to have a scaling relation in

where terms of a unique variable. As an example, the functional
behavior of the local width for the IA scalind 1] can now

q(l+Ax)\ 72 be written as
Ax sin( — )
TAX)=1— WZ(L,t; Ax)~1290f (1/t2,t12 Ax), 5
sin ——
2 where the scaling functioh(u,v,Ax) is
and we have replaced the discrete power spectrum by its u2@= @[ 1+ 2AXa(uv)t 24]  (u<1)
continuous expression, an approximation fully justified be- f(u,v,Ax)~{
. d u <% (u>1)
cause the corrections to the power spectrum in terms of the ©6)

spatial resolution begin to be relevant at laggeand those
modes do not contribute significantly to the total sum in Eq
(1). Useful analytical expressions can be obtained transfor
ing the sum in Eq(1) into an integral. Assuming that the
system size is finite but largeL& Ax), the limits for the
integral are 2r/L andw/AX. If, moreover, Ax<1, the upper
limit can be set tox. Note also that fot>t., the power
spectrum behaves &(q,t;0)~q~3¥*1, where y=ay if
FV or NRN holds andy=«, if S(q,t;0) behaves as IA.
Making a Taylor expansion in Eql), we finally obtain the
following expression for the local width at those time scales

‘and no collapse of the local width for different evolution
Mimes at small length scales is possible.

Incidentally, Eq.(3) also serves to analyze the existence
of a crossover between small and large length scales pro-
posed in Ref[8] for super-rough interfaces. There it has
been claimed that the value,<1, obtained in numerical
simulations using the local width technique, is due to the
convergence of the local and global widthd &tL, i.e., that
there is a crossover between small and large length scales
that leads to anyy that underestimates, . However, the
possible corrections to the scaling behavidy begin to be
relevant for length scalds=1.=L/2. In this case all terms
for k>y+1 are important, and no scaling behavior can be
defined. As a consequence, no crossover effect can explain

- 2Ax(k—1) ) the valuesoy<1.
+k22 Ik (D) 1+ ——— | [+ O(AXT), Some of these analytic results are illustrated in Fig. 1 for
the equilibrium linear molecular beam epitaxy:MBE)
(3  model[9], also called the Mullins-Herring model, for which
it is known that in T+1 dimensions,ay=3/2, z=4, and
where S(q,t) obeys the FV scalingsuper-roughening The LMBE
f,.=co§m(x+1DII'(—2(x+1)), model reads

2AXxy
102

WA(L,t; Ax)~ 12X
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1 LMBE model obtained from numerical simulations using their defi-

nition in terms of the interface height. In both cases the solid lines
are the discrete versions obtained from E(S.and (8), respec-
tively. The continuous local width, Eq1) in the limit Ax=0, is

also plotted(broken ling. For the HHCF the continuous and the
%Fscrete results are indistinguishable. The values of the parameters
areD=0.1, Ax=0.5, L=500, andt=8192. The short wide solid

line has slope 2 and serves to guide the eye.

FIG. 1. Discrete local widtt{l) for different values of the spa-
tial resolution for the LMBE model. The system size [s
=1000 (.=160). The inset plot shows the local and the effective
roughness exponents versus the spatial resolution. The avera
value of ¢ is 0.996+ 0.004.

*h(x,t)

(9th(X,t):_ &X4 +77(th)u (7)

and, therefore, the corrections introduced by the spatial reso-
lution are negligible for the HHCFa result already pointed

. , . ) out in[3]). Consequently, the correlation function is a much
where7(x,t) denotes Gaussian white noise with zero meary,qre adequate method for computing the local roughness

value and correlation given byn(x,t) 7(x’,t'))=2D8(t  han the local width.
—t')5(x—x'). Figure 1 shows that the effect of the finite To check all the previous analytical results we performed

resolution is to Increase the local width at small l.engthnumerical simulations of Eq7) using an Euler scheme with
scales. The effective roughness exponents were obtained fit-

ting the local width to a power law as it is usually done in periodic boundary CO.I’]dItIOI’]S.- F|gu_re 2 shows gnamblgu-
numerical simulations and experiments) 2%, From ously that the local width obtained in the simulations coin-

the same plot, it is clear that the larger the lattice spacing thgldes with the finite reSOIUI'OO local widtfd). Numerical
smaller the effective local roughness exponent. On the othe\falues for _the Iocal_a_nd effective roughness _exponer;tas have
hand, the local roughness exponents have been comput8§€n obtained by f;ttmg the data to expressi(lg > (1
flttlng the local width with a fUﬂCtiOﬂf(')OC(|2a|+2|AX) +2|AX) andf(I)OCI eff, respectlvely. The values obtained
according to Eq(4). As one expects, the local roughnessare a;=0.96+0.01 anda4=0.81+0.03. For the sake of
exponent does not depend on the finiteness of the spati§PMmpleteness, we have also plotted in Fig. 2 the correlation
resolution once this effect is properly taken into account infunction. Fitting the data at small length scales to a power
the fitting function. law yieldsa;=0.95+ 0.01. Notice that no relevant correction
Now we analyze the effect of the spatial resolution on theto the scaling at small scales is observable in contrast with
height-height correlation function. With the same approxi-the case of the local width.
mation used in Eq(1), the expression for the correlation  Another useful way to look for the scaling exponents is to
function in terms of the power spectrum and the spatial resocollapse the local width or the correlation at different times
lution is by appropriately rescaling the axis. In Fig. 3 we plot
W2(t)/12% and G2(t)/12% versus|/t*? for two different
evolution times. Note that while a good data collapse can be
G,Z(t;Ax)z 2 4S(q,t;Ax)[l—cos(ql)]wGF(t;O), (8) obtained for the correlation function for all length scales, this
q>0 is not so for the local width at small length scales.
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In summary, in this work we have shown for quite generalwhereas if the experimental setup registers directly the power
scaling behaviors that, when considering the local width-spectrum, the HHCF should be the cross-checking tool for
function, the effects of finite spatial resolution are importantvalidating the results. Second, the local width can be used
and, if not taken into account, they may lead to wrong valuesgroperly only if the finite resolution correction to the scaling
for the local roughness exponent. As a consequence, the sc@-included in the analysis. Third, data collapsing according

ing ansatz cannot be consistently formulated in terms ofg the scaling ansatz can only be correctly performed with
the local width. These limitations, however, do not applythe HHCF.

to the HHCF. These results have several important practical

consequences for experiments and numerical simulations. The authors are deeply indebted to J. Mpea and R.
First, and most important, the HHCF should be the preferreduerno for fruitful discussions and comments. This work has
tool for the scaling analysis of rough surfaces in situationgeen supported by DGESEISpain, Project Nos. PB96-
where the raw data are the topography of the interfaces, 0148 and PB97-0076.
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